3.725 \(\int \frac{(d+e x)^{3/2}}{(f+g x)^{5/2} (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=192 \[ -\frac{16 c d g \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt{d+e x} \sqrt{f+g x} (c d f-a e g)^3}-\frac{8 g \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt{d+e x} (f+g x)^{3/2} (c d f-a e g)^2}-\frac{2 \sqrt{d+e x}}{(f+g x)^{3/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)} \]

[Out]

(-2*Sqrt[d + e*x])/((c*d*f - a*e*g)*(f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (8*g*Sqrt[a
*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(c*d*f - a*e*g)^2*Sqrt[d + e*x]*(f + g*x)^(3/2)) - (16*c*d*g*Sqrt[a*
d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(c*d*f - a*e*g)^3*Sqrt[d + e*x]*Sqrt[f + g*x])

________________________________________________________________________________________

Rubi [A]  time = 0.247417, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 48, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {868, 872, 860} \[ -\frac{16 c d g \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt{d+e x} \sqrt{f+g x} (c d f-a e g)^3}-\frac{8 g \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt{d+e x} (f+g x)^{3/2} (c d f-a e g)^2}-\frac{2 \sqrt{d+e x}}{(f+g x)^{3/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/((f + g*x)^(5/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x])/((c*d*f - a*e*g)*(f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (8*g*Sqrt[a
*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(c*d*f - a*e*g)^2*Sqrt[d + e*x]*(f + g*x)^(3/2)) - (16*c*d*g*Sqrt[a*
d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*(c*d*f - a*e*g)^3*Sqrt[d + e*x]*Sqrt[f + g*x])

Rule 868

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(c*e*f + c*d*g - b*e*g)), x]
 + Dist[(e^2*g*(m - n - 2))/((p + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*
x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[
c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]

Rule 872

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] - Dist[(c*e*(m - n - 2))/((n + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x
^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^
2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 860

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e
 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && EqQ[m - n - 2, 0]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{(f+g x)^{5/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac{2 \sqrt{d+e x}}{(c d f-a e g) (f+g x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{(4 g) \int \frac{\sqrt{d+e x}}{(f+g x)^{5/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d f-a e g}\\ &=-\frac{2 \sqrt{d+e x}}{(c d f-a e g) (f+g x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{8 g \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g)^2 \sqrt{d+e x} (f+g x)^{3/2}}-\frac{(8 c d g) \int \frac{\sqrt{d+e x}}{(f+g x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 (c d f-a e g)^2}\\ &=-\frac{2 \sqrt{d+e x}}{(c d f-a e g) (f+g x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{8 g \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g)^2 \sqrt{d+e x} (f+g x)^{3/2}}-\frac{16 c d g \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g)^3 \sqrt{d+e x} \sqrt{f+g x}}\\ \end{align*}

Mathematica [A]  time = 0.0756248, size = 105, normalized size = 0.55 \[ -\frac{2 \sqrt{d+e x} \left (-a^2 e^2 g^2+2 a c d e g (3 f+2 g x)+c^2 d^2 \left (3 f^2+12 f g x+8 g^2 x^2\right )\right )}{3 (f+g x)^{3/2} \sqrt{(d+e x) (a e+c d x)} (c d f-a e g)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/((f + g*x)^(5/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x]*(-(a^2*e^2*g^2) + 2*a*c*d*e*g*(3*f + 2*g*x) + c^2*d^2*(3*f^2 + 12*f*g*x + 8*g^2*x^2)))/(3*(c
*d*f - a*e*g)^3*Sqrt[(a*e + c*d*x)*(d + e*x)]*(f + g*x)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 168, normalized size = 0.9 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( -8\,{c}^{2}{d}^{2}{g}^{2}{x}^{2}-4\,acde{g}^{2}x-12\,{c}^{2}{d}^{2}fgx+{a}^{2}{e}^{2}{g}^{2}-6\,acdefg-3\,{c}^{2}{d}^{2}{f}^{2} \right ) }{3\,{a}^{3}{e}^{3}{g}^{3}-9\,{a}^{2}cd{e}^{2}f{g}^{2}+9\,a{c}^{2}{d}^{2}e{f}^{2}g-3\,{c}^{3}{d}^{3}{f}^{3}} \left ( ex+d \right ) ^{{\frac{3}{2}}} \left ( gx+f \right ) ^{-{\frac{3}{2}}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

-2/3*(c*d*x+a*e)*(-8*c^2*d^2*g^2*x^2-4*a*c*d*e*g^2*x-12*c^2*d^2*f*g*x+a^2*e^2*g^2-6*a*c*d*e*f*g-3*c^2*d^2*f^2)
*(e*x+d)^(3/2)/(g*x+f)^(3/2)/(a^3*e^3*g^3-3*a^2*c*d*e^2*f*g^2+3*a*c^2*d^2*e*f^2*g-c^3*d^3*f^3)/(c*d*e*x^2+a*e^
2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}{\left (g x + f\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(g*x + f)^(5/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.86617, size = 1256, normalized size = 6.54 \begin{align*} -\frac{2 \,{\left (8 \, c^{2} d^{2} g^{2} x^{2} + 3 \, c^{2} d^{2} f^{2} + 6 \, a c d e f g - a^{2} e^{2} g^{2} + 4 \,{\left (3 \, c^{2} d^{2} f g + a c d e g^{2}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d} \sqrt{g x + f}}{3 \,{\left (a c^{3} d^{4} e f^{5} - 3 \, a^{2} c^{2} d^{3} e^{2} f^{4} g + 3 \, a^{3} c d^{2} e^{3} f^{3} g^{2} - a^{4} d e^{4} f^{2} g^{3} +{\left (c^{4} d^{4} e f^{3} g^{2} - 3 \, a c^{3} d^{3} e^{2} f^{2} g^{3} + 3 \, a^{2} c^{2} d^{2} e^{3} f g^{4} - a^{3} c d e^{4} g^{5}\right )} x^{4} +{\left (2 \, c^{4} d^{4} e f^{4} g +{\left (c^{4} d^{5} - 5 \, a c^{3} d^{3} e^{2}\right )} f^{3} g^{2} - 3 \,{\left (a c^{3} d^{4} e - a^{2} c^{2} d^{2} e^{3}\right )} f^{2} g^{3} +{\left (3 \, a^{2} c^{2} d^{3} e^{2} + a^{3} c d e^{4}\right )} f g^{4} -{\left (a^{3} c d^{2} e^{3} + a^{4} e^{5}\right )} g^{5}\right )} x^{3} +{\left (c^{4} d^{4} e f^{5} - a^{4} d e^{4} g^{5} +{\left (2 \, c^{4} d^{5} - a c^{3} d^{3} e^{2}\right )} f^{4} g -{\left (5 \, a c^{3} d^{4} e + 3 \, a^{2} c^{2} d^{2} e^{3}\right )} f^{3} g^{2} +{\left (3 \, a^{2} c^{2} d^{3} e^{2} + 5 \, a^{3} c d e^{4}\right )} f^{2} g^{3} +{\left (a^{3} c d^{2} e^{3} - 2 \, a^{4} e^{5}\right )} f g^{4}\right )} x^{2} -{\left (2 \, a^{4} d e^{4} f g^{4} -{\left (c^{4} d^{5} + a c^{3} d^{3} e^{2}\right )} f^{5} +{\left (a c^{3} d^{4} e + 3 \, a^{2} c^{2} d^{2} e^{3}\right )} f^{4} g + 3 \,{\left (a^{2} c^{2} d^{3} e^{2} - a^{3} c d e^{4}\right )} f^{3} g^{2} -{\left (5 \, a^{3} c d^{2} e^{3} - a^{4} e^{5}\right )} f^{2} g^{3}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2/3*(8*c^2*d^2*g^2*x^2 + 3*c^2*d^2*f^2 + 6*a*c*d*e*f*g - a^2*e^2*g^2 + 4*(3*c^2*d^2*f*g + a*c*d*e*g^2)*x)*sqr
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)/(a*c^3*d^4*e*f^5 - 3*a^2*c^2*d^3*e^2*f^4*
g + 3*a^3*c*d^2*e^3*f^3*g^2 - a^4*d*e^4*f^2*g^3 + (c^4*d^4*e*f^3*g^2 - 3*a*c^3*d^3*e^2*f^2*g^3 + 3*a^2*c^2*d^2
*e^3*f*g^4 - a^3*c*d*e^4*g^5)*x^4 + (2*c^4*d^4*e*f^4*g + (c^4*d^5 - 5*a*c^3*d^3*e^2)*f^3*g^2 - 3*(a*c^3*d^4*e
- a^2*c^2*d^2*e^3)*f^2*g^3 + (3*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*f*g^4 - (a^3*c*d^2*e^3 + a^4*e^5)*g^5)*x^3 + (c
^4*d^4*e*f^5 - a^4*d*e^4*g^5 + (2*c^4*d^5 - a*c^3*d^3*e^2)*f^4*g - (5*a*c^3*d^4*e + 3*a^2*c^2*d^2*e^3)*f^3*g^2
 + (3*a^2*c^2*d^3*e^2 + 5*a^3*c*d*e^4)*f^2*g^3 + (a^3*c*d^2*e^3 - 2*a^4*e^5)*f*g^4)*x^2 - (2*a^4*d*e^4*f*g^4 -
 (c^4*d^5 + a*c^3*d^3*e^2)*f^5 + (a*c^3*d^4*e + 3*a^2*c^2*d^2*e^3)*f^4*g + 3*(a^2*c^2*d^3*e^2 - a^3*c*d*e^4)*f
^3*g^2 - (5*a^3*c*d^2*e^3 - a^4*e^5)*f^2*g^3)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(g*x+f)**(5/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}{\left (g x + f\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^(3/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(g*x + f)^(5/2)), x)